Robust thermal Face Recognition using Region Classifiers

نویسندگان

  • Ayan Seal
  • Debotosh Bhattacharjee
  • Mita Nasipuri
  • Consuelo Gonzalo-Martín
چکیده

This paper presents a robust approach for recognition of thermal face images based on decision level fusion of 34 di®erent region classi ̄ers. The region classi ̄ers concentrate on local variations. They use singular value decomposition (SVD) for feature extraction. Fusion of decisions of the region classi ̄er is done by using majority voting technique. The algorithm is tolerant against false exclusion of thermal information produced by the presence of inconsistent distribution of temperature statistics which generally make the identi ̄cation process di±cult. The algorithm is extensively evaluated on UGC-JU thermal face database, and Terravic facial infrared database and the recognition performance are found to be 95.83% and 100%, respectively. A comparative study has also been made with the existing works in the literature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast and Accurate 3D Face Recognition Using Registration to an Intrinsic Coordinate System and Fusion of Multiple Region Classifiers

In this paper we present a new robust approach for 3D face registration to an intrinsic coordinate system of the face. The intrinsic coordinate system is defined by the vertical symmetry plane through the nose, the tip of the nose and the slope of the bridge of the nose. In addition, we propose a 3D face classifier based on the fusion of many dependent region classifiers for overlapping face re...

متن کامل

Face Recognition in Thermal Images based on Sparse Classifier

Despite recent advances in face recognition systems, they suffer from serious problems because of the extensive types of changes in human face (changes like light, glasses, head tilt, different emotional modes). Each one of these factors can significantly reduce the face recognition accuracy. Several methods have been proposed by researchers to overcome these problems. Nonetheless, in recent ye...

متن کامل

A comprehensive experimental comparison of the aggregation techniques for face recognition

In face recognition, one of the most important problems to tackle is a large amount of data and the redundancy of information contained in facial images. There are numerous approaches attempting to reduce this redundancy. One of them is information aggregation based on the results of classifiers built on selected facial areas being the most salient regions from the point of view of classificati...

متن کامل

Robust 3D face recognition using adapted statistical models

The paper presents a novel framework to 3D face recognition that exploits region covariance matrices (RCMs), Gaussian mixture models (GMMs) and support vector machine (SVM) classifiers. The proposed framework first combines several 3D face representations at the feature level using RCM descriptors and then derives low-dimensional feature vectors from the computed descriptors with the unscented ...

متن کامل

Facial Expression Recognition Based on Anatomical Structure of Human Face

Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IJPRAI

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2014